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Adolescence is a pivotal stage during development when one’s personality, emotion, 
and behavioral traits are shaped to a great extent, and the underlying neural 
circuits undergo substantial developmental organizations. Dramatic and dynamic 
changes occur in sleep architecture throughout the postnatal developmental course. 
Insufficient sleep and disruption of sleep/wake coherence are prevalent among 
the adolescents worldwide, and even so in young patients with neuropsychiatric 
conditions. Although accumulating evidence has suggested a tight association 
between sleep disruption and depression/anxiety, the causal relationship remains 
largely unclear. More importantly, most of these studies focused on adult subjects, 
and little is known about the role of sleep during the development of mood and 
behavior. Here we  review recent studies investigating the acute and chronic 
effects of adolescent sleep disruption on depression and anxiety both in humans 
and rodent models with focuses on the assessment methodology and age. By 
discussing the findings and unsolved problems, we  hope to achieve a better 
understanding of the relationship between sleep and mental health in adolescents 
and provide insights for future research.
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Introduction

Adolescence is the transition period between childhood and adulthood when individuals 
experience significant physiological and psychological transformations. It is believed to be a 
critical period for higher-order brain functions such as learning, decision-making, emotion, and 
behavior. It is also a “risk” stage for many neuropsychiatric disorders, including major depressive 
disorders, anxiety disorders, alcohol and other substance abuse, schizophrenia, and bipolar 
disorder (Davidson et al., 2015; Solmi et al., 2022). The neural underpinnings of this susceptibility 
remain largely unknown. It likely involves the delayed maturation, and thus prolonged 
vulnerability, of brain structures underlying these higher-order functions, such as the prefrontal 
cortex (PFC) (Kolk and Rakic, 2022). Following the rapid formation of massive synaptic 
connections in childhood, the adolescent brain undergoes substantial refinement and 
modification of neural connections, therefore exhibits a high level of plasticity and hence more 
vulnerable to environmental changes compared to the adult brain (Kolk and Rakic, 2022; Moyer 
and Zuo, 2018). This was mostly demonstrated in the sensory-motor cortices, but evidence 
suggesting other cortical regions, such as the PFC, as well as subcortical regions follow the similar 
developmental trajectory, although the time course may be different (Kolk and Rakic, 2022).

Sleep architecture evolves dramatically during postnatal development (Roffwarg et al., 
1966). The total amount of sleep decreases progressively and dramatically from 14-16 h/day in 
newborn babies to 7–8 h/day in adults. Almost 50% of total sleep at birth (~ 8 h/day) is the 
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rapid-eye-movement (REM) sleep, which is rapidly reduced in 
childhood, and by the onset of adolescence, it constitutes of 20% of 
total sleep (~2 h/day). On the other hand, non-REM (NREM) sleep 
first increases in infancy and remains at relatively high level (~9 h/day), 
before it demonstrates a substantial decrease during adolescence and 
eventually contributes to 80% of adult sleep (~6 h/day). In addition to 
the sleep duration changes, specific brain activity patterns also 
demonstrate dynamics over the adolescent developmental course. 
Compared to early adolescence, the EEG delta power in NREM sleep 
and theta power in REM sleep decrease by about 60% at the end of 
adolescence (Campbell and Feinberg, 2009). These changes occur 
about 1 year earlier in girls than in boys, likely due to the advanced 
puberty onset in females (Campbell et al., 2012). Sleep spindles also 
show decrease in amplitude but increase in frequency, density, and 
coherence during adolescence (Herrera and Tarokh, 2024). Recent 
surveys suggest that although sleep pattern varies cross-nationally, 
insufficient sleep is prevalent among adolescents world-wide especially 
on the school days, with the percentage of adolescents meeting sleep 
recommendations (8 h/day) (Hirshkowitz et al., 2015) ranging from 32 
to 86% (Gariepy et al., 2020; Zhang et al., 2023). Transformations of 
lifestyle and physiology greatly shape sleep schedule during 
adolescence, and adolescents start to show a rapidly increasing risk of 
sleep problems. A natural shift in circadian rhythm when entering 
puberty leads to delayed bed time by ~2 h, while the sleep need is not 
reduced (Crowley et al., 2007). This may cause “delayed sleep phase 
syndrome” which is more common among adolescents than in adults 
(Gariepy et al., 2020; Wheaton and Claussen, 2021). As teenagers grow 
up, increasing social activities lead to “social jet lag” and irregular sleep 
schedule (Hasler et  al., 2022). The relationship between sleep and 
mental health has long been postulated based on the high occurrence 
of sleep problems in psychiatric disorders (Ford and Kamerow, 1989). 
Recent findings further underscore a developmental link given the 
prevalence of sleep disturbances in neurodevelopmental disorders, 
such as autism and schizophrenia, and in neuropsychiatric disorders 
not typically considered a developmental disorder but having a high 
risk of disease onset during adolescence, such as depression and 
anxiety disorders; in many cases, sleep disturbances precede the 
progression of psychiatric illness and are thought to be a cause of mood 
dysregulation and behavioral abnormalities (Hertenstein et al., 2019).

Sleep disruptions in depression and 
anxiety in humans

Sleep disturbances have long been viewed as one of the core 
symptoms of depression (Ford and Kamerow, 1989; Jindal and Thase, 
2004). In fact, doctors may not be confident to diagnose depression in 
the absence of sleep complaints. Common sleep disturbances linked 
to depression include insomnia (80%), hypersomnia (15%), and 
obstructive sleep apnea (20%) (Zhang et al., 2022). About 40% of 
insomnia patients are also clinically diagnosed with depression, 
suggesting a bidirectional association (Hertenstein et al., 2019; Zhang 
et al., 2022). Interestingly, patients with depression might oscillate 
between insomnia and hypersomnia within the same depressive 
episode, highlighting the complexity of this relationship. Like 
depression, patients with anxiety disorders frequently experience 
insomnia, including increased subjective sleep disturbance, reduced 
sleep continuity, and decreased total sleep time (Alfano et al., 2009).

In a study that sampled 87 adolescents (age 12–17) and 88 younger 
children (age 6–11) (Alfano et al., 2009), depressive symptoms were 
more strongly associated with sleep problems in adolescents, whereas 
anxiety appeared to be linked to sleep issues across all youth. The 
authors generated a single sleep problems factor that contained sleep-
related items extracted from the Child Behavior Checklist (CBCL), 
Revised Child Anxiety and Depression Scales (RCADS) and Revised 
Children’s Manifest Anxiety Scale (RCMAS) and also consistent with 
other commonly used measures of childhood sleep (e.g., Children’s 
Sleep Habits Questionnaire), including overtiredness, less (or more) 
sleep than most children, trouble sleeping, and worries about going to 
bed at night. They found in both age groups, the sleep problems factor 
had a strong correlation with the anxiety measures, including 
generalized anxiety, panic and agoraphobia, and social anxiety in 
RCADS. However, for depression measures using the Child 
Depression Inventory (CDI), sleep problems showed a higher 
correlation coefficient in the adolescent group than in the children 
group. A large-sample survey in junior high/high school teenagers in 
Japan presented interesting sex differences in sleep habits and the 
associations with depression/anxiety that female adolescents generally 
sleep less than male adolescents (by ~20 min) and that their sleep 
duration with the lowest risk of depression/anxiety is also less (by 
50–60 min) (Ojio et  al., 2016). In addition, more insomnia, 
hypersomnia, or nightmares, shorter REM sleep latency and increased 
rapid eye movement activity were reported in suicidal psychiatric 
patients than the nonsuicidal ones, and suicide is perhaps the most 
devastating consequence of depression that significantly increases 
during adolescence (Liu and Buysse, 2006). Furthermore, longitudinal 
studies found that the association between sleep problems and 
depression/anxiety increased in adolescence as compared to that in 
early childhood and that a set of sleep variables at age 15, including 
total sleep time on school days, daytime sleepiness, and night waking, 
predicted anxiety and depression symptoms prospectively at later 
stages, either by clinic assessment or self-report questionnaires 
(Orchard et al., 2020; Gregory and O'Connor, 2002). Roberts and 
Duong showed that increased risk of major depression by reduced 
sleep may in turn increase the risk of further sleep decrease in a 
one-year follow-up study, indicating a reciprocal relationship (Roberts 
and Duong, 2014). In contrast, Wang et al. found that sleep problems 
in adolescence (age 14–17) can be  retrospectively predicted by 
anxiety/depression symptoms in childhood (age 5), but not vice versa 
(Wang et al., 2016). These correlation studies demonstrate tight yet 
intricate associations between sleep disturbances and depression/
anxiety in a developmental context (for a systematic review, see Zhang 
et al., 2022).

In experimental settings, acute or chronic sleep deprivation (SD) 
has been shown to cause immediate mood disruption, psychological 
distress and depressive- and anxiety-like symptoms both in adults 
(Talbot et al., 2010; Dinges et al., 1997; Babson et al., 2010) and in 
adolescents (Talbot et al., 2010; Dagys et al., 2012; Baum et al., 2014). 
In contrast, interestingly, SD was initially suggested as an alleviating 
method for depression by Johann Christian August Heinroth in 1818, 
who was considered the first university professor of psychiatry 
(Steinberg and Hegerl, 2014). This idea, named “SD therapy,” was 
supported by clinical reports and experimental trials subsequently at 
some level (Tse et  al., 2024; Ioannou et  al., 2021; Giedke and 
Schwarzler, 2002; Hemmeter et  al., 2010). One-time total SD or 
repeated sleep restriction over days (a couple of hours per day) seemed 
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effective either as add-ons to standard treatments for depression or as 
single-component therapy (Tse et  al., 2024; Ioannou et  al., 2021; 
Giedke and Schwarzler, 2002; Hemmeter et al., 2010). This discrepancy 
may be due to a difference in the subjects: the SD therapy was used in 
patients already diagnosed with depression or insomnia, or both, 
whereas SD with mood-disrupting consequences was mostly done in 
healthy subjects. However, the mechanisms underlying these opposite 
mood effects remain largely unknown and warrant more investigation. 
Recent mechanistic research in humans and mouse models added 
another layer of mystery to this paradoxical role of sleep in depression/
anxiety (please see Sleep deprivation to alleviate depression/anxiety in 
the next section).

Sleep disruptions and depression- and 
anxiety-like behaviors in rodents

A role of sleep in regulating mood has emerged from studies in 
rodent models over the past decades. However, before we discuss the 
findings, special consideration must be  given to the disruption 
methods, manipulation ages and potential confounding factors.

Disruption methods and duration

Up until now, multiple sleep disruption or deprivation methods 
have been developed. Perhaps one of the simplest methods is to 
expose animals to novel objects/environments or running wheels and 
utilize their voluntary exploration or exercise to keep them awake. 
This method is known to cause minimal stress (Kopp et al., 2006). 
However, mice can quickly become habituated to the stimulus, and 
thus the deprivation usually is no longer effective after the initial 
1–2 h. Another manual deprivation method is by “gently touching” the 
animal when it displays signs of sleep. However, this protocol requires 
continuous monitoring of the mouse behavior and/or EEG, and the 
amount of “touches” required to keep wakefulness can increase 
substantially after the initial 1–2 h. Thus, this technique is labor-
intensive and difficult to keep consistent across experimenters, making 
it challenging for chronic SD. Automated SD, on the other hand, has 
been widely adopted in long-term experiments. The setups typically 
involve forced motion or alertness to prolong wakefulness from hours 
to days, by using devices such as moving treadmills or rotating wheels 
(Colavito et  al., 2013), small alternating platforms (Pierard et  al., 
2007), spinning disks (Rechtschaffen et al., 1983), or grid floors above 
water (Shinomiya et  al., 2003). Recent studies used programmed 
shaking platform (Bian et al., 2022; Lord et al., 2022; Bian and De 
Lecea, 2023) or moving bars (Puech et al., 2023) showed effective 
deprivation for 4 h or more. Furthermore, ways to selectively deprive 
a sleep state (i.e., NREM or REM) are still limited. REM-specific 
deprivation (REM-D) has been reported, but the efficacy and 
specificity are not satisfactory. For example, REM-D using the 
platform-over-water method (Morden et al., 1967) in mice only 
resulted in ~65% reduction of REM sleep and a significant reduction 
of NREM sleep (Arthaud et al., 2015). NREM-specific disruption, on 
the other hand, is more challenging, as NREM reduction will normally 
be  followed by REM depletion. NREM fragmentation without 
affecting REM sleep, however, has been achieved by optogenetic 
methods (Rolls et al., 2011).

Experimental age

In mice, adolescence roughly corresponds to between postnatal 
day (P) 23 and P60 (Brust et al., 2015). Sleep studies in developing 
mice has been facing the challenges of polysomnographic recording 
in young pups, due to their small and fragile skulls as well as the 
limited recovery time allowed between the surgery and desired 
recording age. Therefore, the amount of sleep deprived were often 
measured using behavioral criteria instead, which are less accurate 
and unable to identify sleep states or specific components. The rapid 
growth of developing skull also makes longitudinal recording difficult. 
Recently, researchers have managed to record EEG/EMG in post-
weaning mice (Medina et al., 2022). However, aside from the tolerance 
issue, the isolation required by polysomnographic recording with 
cable transmission may cause potential problems, as juvenile social 
isolation has been found to cause significant changes in sociability 
(Yamamuro et  al., 2020) and sleep patterns (Sotelo et  al., 2024). 
Wireless polysomnography allowing sleep recording in the litter will 
potentially provide a solution to this dilemma, although further 
optimization toward lighter headset and longer recording time is 
needed. EEG/EMG in neonatal rats are much easier. Indeed, a lot of 
insights regarding sleep’s role in early development came from rat 
studies (Frank, 2020). Nonetheless, the isolation problem remains, and 
the lack of genetic tools has limited mechanistic interrogations in rats.

Stress as a confounding factor

SD has long been recognized to induce stress, which is signified 
by the elevated stress hormones in the blood (e.g., cortisol in humans, 
corticosterone in rodents) and can dramatically alter emotion, 
behavior, or sleep itself (Nollet et al., 2020). The stress brought about 
by SD comes from two major sources. One is the physical stimulation 
applied to keep the animal awake in the experimental apparatus, e.g., 
platform shaking or bar rotating, and can be  controlled through 
proper experimental design. The other source is the loss of sleep per 
se. Prolonged sleep loss causes significant corticosterone elevation in 
rats and eventually leads to pre-mature death even when the physical 
stimulation was controlled (Rechtschaffen et al., 1983), suggesting that 
sleep alone plays an essential role in maintaining physiological 
integrity. In the context of development, if sleep disruption contributes 
to depression and anxiety, is this effect merely a consequence of 
compromised physiology, or mediated by distinct mechanisms? To 
answer this question, it is vital to dissect the contribution of sleep in a 
setting without systematic stress response, which is challenging and 
often omitted by previous studies. It should be noted that SD is not 
necessarily accompanied by a detectable stress response. Whether a 
SD protocol is stressful or not largely depends on the disruption 
method and duration as well as the manipulation age (Nollet et al., 
2020). SD methods like exposing to novel objects (Kopp et al., 2006) 
and gentle handling (Vecsey et  al., 2013; Hagewoud et  al., 2010) 
caused no increase in plasma corticosterone level, or only a mild 
increase to which the animal can quickly habituate, and therefore are 
not considered significant stressors. Carefully designed setups using 
running wheels, shaking/rotating platforms, or closed-loop 
disruptions can also achieve sleep loss without inducing significant 
corticosterone increase (Bian et al., 2022; Lord et al., 2022; Bian and 
De Lecea, 2023; Nollet et al., 2020). In addition, setting up proper 
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stress control [e.g., restrain stress (Bian et al., 2022) or direct injection 
of corticosterone (Yang et al., 2014)] and manipulating individual 
sleep components without changing the overall sleep amount also help 
to exclude the confounding effects from the behavioral results (Bian 
et al., 2022). Furthermore, the long-lasting feature of depression and 
anxiety as a mood suggests that the underlying neurobiological 
changes should be  persistent. Therefore, after SD manipulation is 
removed but before behavioral assessment, allowing sleep to recover 
(or not) may be  a good strategy to exclude the immediate stress 
influence and examine the long-term effects of SD. Notably, the 
magnitude of corticosterone increase induced by SD is more severe in 
neonatal rats than in adolescents despite a developmental increase in 
baseline corticosterone level, suggesting developmental endurance of 
SD stress (Hairston et al., 2001).

Depression- and anxiety-like behavior 
caused by adolescent SD

To assess anxiety-like behavior, open field (OFT), elevated plus 
maze (EPM), light/dark chamber (LD) tests are commonly used 
(Crawley, 2007). These tests compare the time that mice spent in the 
“low-danger” area (edges in OFT, closed arms in EPM, or dark 
chambers in LD) over the “high-danger” area (center area in OFT, 
open arms in EPM, or light chambers in LD) as an index of anxiety 
level. To assay different aspects of depression, multiple behavioral tests 
have been developed. Increased immobility time in the forced 
swimming test (FST) is considered a sign of despair in rodents, 
whereas decreased preference for sucrose over water in the sucrose 
preference drinking test (SPT) reflects anhedonia (Crawley, 2007). In 
addition, sucrose negative contrast test (SNCT) measures the response 
change to reward downshift, and the depressed animals may exhibit 
hypo- or hypersensitivity to the shifting stimuli (Matthews et  al., 
1996). Self-grooming in the sucrose splash test (SST) is considered to 
reflect self-care motivation, the impairment of which indicates 
depressive state (Lefter et al., 2020).

As summarized in Table  1, behavioral changes reflecting a 
depressive and anxious mood have been reported following SD at 
different developmental stages. Early adolescent SD in rats using 
rotating bars (6–8 h/day, P19–P32) were reported to increase anxiety, as 
measured by EPM and LD, and decrease motivation for self-care and 
increase despair as measured by SST and FST, respectively (Atrooz et al., 
2019; Atrooz et al., 2022). These behavioral changes were likely long-
lasting as some of them were observed at later timepoints approximately 
1 or 2 months after SD. However, in the study the corticosterone level 
was not examined, therefore the confounding stress cannot be excluded. 
In another rat study, 18 h/day REM-D for a longer period in adolescence 
(P21–P42) caused similar reduction in open-arm time and entries in 
EPM at P49, without changing the reward response downshift in SNCT 
(da Silva et al., 2018), but the corticosterone level was also increased by 
REM-D. Deprivation of either total or REM sleep at an earlier childhood 
stage (P14–21) in mice, rats or prairie voles returned negative results on 
anxiety-like behavior (Lord et al., 2022; Feng and Ma, 2003; Jones et al., 
2020), with the mouse and vole studies showing no significant stress, 
suggesting the anxiety-inducing effect may be specific to adolescent 
SD. In mice, long-term, mild SD from early neonatal stage all the way 
to mid/late-adolescence (3 h/day by gentle handling, P5–P42/52) did 
not cause an increase in corticosterone level, but decreased locomotion, 

which might be considered a sign of depression, although the anxiety 
level in EPM seemed unchanged (Sare et al., 2016; Sare et al., 2019). 
Depressive-like behaviors, on the other hand, were induced by only 
8 days of SD of similar intensity by non-stressful gentle-handling 
method in mice during P42–49, including longer immobility time and 
shortened immobility latency in FST, although stress was not excluded 
in this study (Murack et al., 2021). These behavioral changes did not 
occur when the same SD protocol was performed in adult animals, 
indicating a development-specific impact (Murack et al., 2021). Notably, 
when rats were subjected to early adolescent SD (P19–32), more 
anxiety-like behavior were displayed immediately after SD (P33) and at 
young adult stage (P60), but not at the later stage (P90), whereas 
depression-like behavior was more dramatic at P90, but not at earlier 
stages (Atrooz et  al., 2019; Atrooz et  al., 2022). This temporal 
dissociation of anxiety- and depression-like states indicate in-parallel 
mechanisms caused by adolescent SD or differential susceptibilities of 
the symptoms. Alternatively, there may be a mechanistic link between 
the two sets of behavioral abnormalities that sustained anxiety, caused 
by SD, leads to depression.

Adolescent SD-induced social deficits and 
their relationship with depression and 
anxiety

Social withdraw and difficulties in social communication are a 
core symptom shared by many neuropsychiatric disorders, including 
depression, anxiety disorders, autism and schizophrenia. Interestingly 
in several studies above mentioned, there was a striking social 
phenotype. Feng and Ma showed that REM-D in pre-weaning male 
rats (P14–21) decreased their mounting latency when facing female 
conspecifics in adulthood, but intromission and ejaculation were not 
affected (Feng and Ma, 2003). However, maternal separation alone 
produced similar deficits in the same study, making it less clear how 
much sleep loss contributes to this defect. These REM-deprived rats 
also displayed decreased aggression in shock-induced fighting (Feng 
and Ma, 2003). In voles, early-life SD led to decreased social bonding 
(Jones et al., 2019). Saré et al. performed daily gentle handling SD (3 h/
day) in mice during P5–42 and found that it led to slight but 
significant increase in sociability immediately after SD and in social 
novelty preference 4 weeks later (Sare et al., 2016; Sare et al., 2019). 
However, when SD was prolonged to P52 (Sare et  al., 2019), or 
performed only during middle (Bian et al., 2022) or late adolescence 
(Lord et al., 2022), it seemed only to impair social novelty preference. 
Notably, this effect is not likely due to stress or juvenile social isolation 
as these confounding factors were carefully avoided or controlled in 
one of these studies (Bian et al., 2022). Interestingly, although loss of 
social interest is often viewed as a sign of depression in human 
patients, adolescent SD-induced lack of social novelty preference was 
not likely due to depression, based on the following observations 
(Bian et al., 2022). Firstly, the overall sociability was not changed in 
SD mice. Secondly, the level of rewarding dopaminergic activity, 
including the activation of dopaminergic neurons in the ventral 
tegmental area (VTA) and the dopamine release in the nucleus 
accumbens (NAc), was not reduced; it was the timing of these 
dopaminergic activities in relation to social interaction events that was 
impaired in SD mice. Thirdly, SD mice exhibited normal craving for 
food and sucrose, and their VTA response to these non-social rewards 
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TABLE 1 Effects of developmental SD on anxiety and depression in rodent studies.

References Animal 
model

Deprivation 
method

Disrupted 
sleep 
component

Manipulation 
age, duration per 
day

Observation 
age

Anxiety-like Depression-like Other behavior 
impact

Serum 
corticosterone 
measurement

Sare et al. (2016, 

2019)

Mouse Gentle handling Nonspecific P5 - P42 /P52

3 h/day

P43–45, P72–76

/P42-52, P84-94

OFT: no change in 

center/total ratio

EPM: no effect

OFT: activity↓

(P44, P73/P42, 84)

Sex-specific effects in 

social behavior

Not in the 2016 

study, but in the 2019 

study, no significant 

change

Lord et al. (2022) Mouse (wild-

type and Shank3 

ΔC)

Orbital shaker Nonspecific P14–P21 (P56–63 as 

adult control)

Full-day

P70–P115 EPM: Time in open arms 

different between 

genotypes but not 

changed by SD

OFT: activity different 

between genotypes but 

not changed by SD

Yes, no significant 

change

Bian et al. (2022) Mouse Programmed 

shaker

Nonspecific P35–42 P56 Locomotor activity: no 

effect

EPM: no effect

Social novelty 

preference↓

Yes, no significant 

change

Murack et al. (2021) Mouse Gentle handling Nonspecific 6–7 weeks

(10–11 week as adult 

control)

4 h/day

7 weeks Not tested FST: immobility time↑, 

latency↓(7 week)

Measurements were 

done after restraint. 

SD mice show greater 

stress response in 

females. Stress by SD 

was not measured

Feng and Ma (2003) Rat Shaker controlled 

by REM 

detection

REM P14–P21, full-day 3 months Not tested OFT: no effect Sexual behavior↓

Shock-induced 

fighting: offensive 

behavior↑ and 

defensive behavior↓

REM in adulthood↑

No

Atrooz et al. (2019, 

2022)

Rat Rotating bar Nonspecific P19–P32, 6–8 h/day P33, P60, P90 EPM: time and entries in 

open arms↓ (P33, P60)

LD: time in lit area 

↓(P33)

FST: immobility time↑ 

(P90)

SST: time 

grooming↓(P33)

Alcohol preference↑ 

(P39) indicating 

increased reward-

seeking behavior

No

da Silva et al. (2018) Rat Platforms 

immersed in 

water

REM P21–P42

18 h/day

P45–49 EPM: time and entries in 

open arms↓ (P49)

SNCT: no effect on SCI 

(P45–48)

Yes, higher in SD 

group

Jones et al. (2019, 

2020)

Prairie vole Orbital shaker Nonspecific P14–P21

full-day

P80–P130 LD: no effect No effect on baseline 

ethanol intake

Ethanol intake following 

foot shock↑

Interaction with 

novel objects↓

Social bonding↓

Yes, no significant 

change

https://doi.org/10.3389/fnins.2024.1479420
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Chai and Bian 10.3389/fnins.2024.1479420

Frontiers in Neuroscience 06 frontiersin.org

was not significantly changed, suggesting the absence of general 
anhedonia. Finally, EPM results suggest SD mice had normal anxiety 
level compared to the control group. Therefore, the impact of 
adolescent sleep on mood and behavior is multi-layered, and detailed 
dissection of intricate effects and mechanisms of SD is warranted.

Sleep deprivation to alleviate depression/
anxiety

In contrast to the perspective that long-term sleep disruption leads 
to heightened risk of depression and anxiety, transient SD has been 
shown clinically a rapid and efficient way to alleviate depression with a 
success rate of 60–70%, better than any existing anti-depressant drugs 
(Tse et al., 2024; Boland et al., 2017). SD increases the homeostatic sleep 
drive and thus, supposedly leads to a more consolidated recovery sleep 
afterwards. However, this does not likely play a role here because the 
mood response occurs, if it does, within hours after SD treatment 
begins, and in fact, more than 80% of the responders show a relapse into 
depression after the recovery sleep (Hemmeter et al., 2010). Human 
fMRI revealed that one night of total SD enhanced connectivity between 
the amygdala and anterior cingulate cortex (ACC), which is associated 
with a better mood and impaired in depressed patients, mimicking anti-
depressant effects (Chai et al., 2023). Research in mice showed that 12 h 
SD was sufficient to significantly reduce the immobility time in FST, as 
well as that in a tail suspension test (TST), another assay for depression, 
and that activation of astrocyte adenosine signaling mediated this SD 
effect (Hines et  al., 2013). Enhanced level of mood-boosting 
neuromodulators, such as dopamine and serotonin, has been suggested 
to account for SD’s anti-depressant effect (Wu et al., 2024; Bjorvatn et al., 
2002), but more complex changes are likely at the receptor level (Tuan 
et al., 2023; Vaseghi et al., 2023), making it still far from conclusive 
whether SD promotes or impairs dopaminergic and serotonergic 
neurotransmission. Interestingly, 6 h SD by gentle handling was shown 
to inhibit neuroinflammation and improving neuroplasticity in the ACC 
(Shi et al., 2023) and 12 h SD by a rotating bar enhanced dopamine 
signaling in the mesocorticolimbic but not nigrostriatal pathway (Wu 
et al., 2024) (but corticosterone level was not examined in this study), 
whereas a stressful 72-h SD protocol resulted in systematic dopaminergic 
maladaptation and enhanced neuroinflammation in the brain (Tuan 
et al., 2023). These findings offer mechanistic insights into the different 
impacts of acute versus chronic SD in the brain, especially in the 
structures heavily implicated in depression/anxiety, such as the limbic 
system. Yet the evidence so far is still limited, and many questions 
remain unanswered. How does the acute changes in the affected brain 
regions lead to more systematic deficits when SD is prolonged? How 
does the brain process the accumulating sleep pressure (and the stress 
that comes with it) and the mood boost? Can SD truly enhance mood, 
or is it merely a rapid state transition with no lasting benefits or even 
detrimental outcomes later? These unresolved questions necessitate 
further investigation, and the answers may in turn help understanding 
the long-term effects of SD in adolescence.

Conclusion and future directions

The prevalence of sleep disruptions among adolescents, 
particularly those with neuropsychiatric conditions, is a global 

concern. While we  have begun to understand the acute and 
chronic effects of sleep disruptions on mood, emotion, and 
behavior, much remains unknown about the long-term impact of 
these disruptions on the developing brain, both under physiological 
and pathological conditions. Key questions remain unanswered 
regarding to what extent sleep disruption contributes to a specific 
symptom in a particular disorder, whether sleep disruption is more 
“disruptive” during development than in adulthood, whether the 
impact is long-lasting and/or reversible, and what sleep 
components, brain regions and cell types play major roles. Future 
research should aim to address these gaps in our understanding. 
SD experiments in adult rodents have revealed global changes 
in multiple neural or non-neural pathways that may serve as 
the underlying mechanisms. However, due to challenges 
in implementing circuit-specific measurement and manipulation 
methods in developing animals, our understanding of the intricate 
role of sleep in development is still in its early stages. Our recent 
work utilizing viral tracing, fiber photometry and optogenetic tools 
demonstrates that SD during a critical, mid-adolescent period 
impairs social behavior by overexciting the developing VTA 
dopaminergic circuits and disrupting their developmental wiring 
(Bian et al., 2022). We further identified NREM slow waves to be a 
major contributing sleep component (Bian et al., 2022). Recent 
development of non-invasive, ultrasound stimulation techniques 
further offers great potentials for circuit- or neuronal type-specific 
interrogations during adolescence (Murphy et al., 2024; Murphy 
et  al., 2022). There is also a need for more comprehensive and 
systematic understanding based on the dissection of contributions 
of sleep components (SWA, spindles, etc.) and neural circuits in 
depression and anxiety, as well as novel tools to facilitate this work. 
The answers will help achieve a better understanding of the 
relationship between adolescent sleep and mental health, and 
ultimately, develop more effective intervention methods for 
adolescents suffering from sleep disruptions and 
neuropsychiatric disorders.
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